If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-36+y^2+16=0
We add all the numbers together, and all the variables
y^2-20=0
a = 1; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·1·(-20)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*1}=\frac{0-4\sqrt{5}}{2} =-\frac{4\sqrt{5}}{2} =-2\sqrt{5} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*1}=\frac{0+4\sqrt{5}}{2} =\frac{4\sqrt{5}}{2} =2\sqrt{5} $
| 2x/5+1=5x/6-1 | | 15=3r-8 | | 2x/5+1=5x/6-1/3 | | 6-2(w+1)=10w-2(10+w) | | (4/3)m-(3/6)m-10=0 | | 15=3r−6 | | -(3a+2)-3(5a+7)=- | | -3(2x+1)=-3x | | -3y-10=-5y+12 | | (3/2)x+(5/3)x=(1/4)x+2 | | 2x=4(x-2) | | 3g=78 | | 24x+24=72 | | 2(3x-4=4 | | 8y=2y-36 | | 2+3=x+6 | | 3(2x+2)=2(3x+27) | | 355x=-105 | | -6x+17x-11= | | -5x²+12x+28+10=0 | | 4x-2=-1x+12 | | 24+3x-12x=60 | | -5x²+12x+28=10 | | 7-3x9;x=1 | | 5-2(m-8)=4(m+10)+14 | | 8y-11-3y-7=0 | | 2/3(3x–21)=6 | | 8y-11+3y+7=0 | | 5x-1=5x+8 | | 2(m+4)+2=10-2(m-2) | | 5x+8x-9x=23+5 | | 4(5x-2)+6=3x-4 |